skip to main content


Search for: All records

Creators/Authors contains: "Gupta, Lav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Efficient provisioning of 5G network slices is a major challenge for 5G network slicing technology. Previous slice provisioning methods have only considered network resource attributes and ignored network topology attributes. These methods may result in a decrease in the slice acceptance ratio and the slice provisioning revenue. To address these issues, we propose a two-stage heuristic slice provisioning algorithm, called RT-CSP, for the 5G core network by jointly considering network resource attributes and topology attributes in this paper. The first stage of our method is called the slice node provisioning stage, in which we propose an approach to scoring and ranking nodes using network resource attributes (i.e., CPU capacity and bandwidth) and topology attributes (i.e., degree centrality and closeness centrality). Slice nodes are then provisioned according to the node ranking results. In the second stage, called the slice link provisioning stage, the k-shortest path algorithm is implemented to provision slice links. To further improve the performance of RT-CSP, we propose RT-CSP+, which uses our designed strategy, called minMaxBWUtilHops, to select the best physical path to host the slice link. The strategy minimizes the product of the maximum link bandwidth utilization of the candidate physical path and the number of hops in it to avoid creating bottlenecks in the physical path and reduce the bandwidth cost. Using extensive simulations, we compared our results with those of the state-of-the-art algorithms. The experimental results show that our algorithms increase slice acceptance ratio and improve the provisioning revenue-to-cost ratio. 
    more » « less
  2. Fault and performance management systems, in the traditional carrier networks, are based on rule-based diagnostics that correlate alarms and other markers to detect and localize faults and performance issues. As carriers move to Virtual Network Services, based on Network Function Virtualization and multi-cloud deployments, the traditional methods fail to deliver because of the intangibility of the constituent Virtual Network Functions and increased complexity of the resulting architecture. In this paper, we propose a framework, called HYPER-VINES, that interfaces with various management platforms involved to process markers through a system of shallow and deep machine learning models. It then detects and localizes manifested and impending fault and performance issues. Our experiments validate the functionality and feasibility of the framework in terms of accurate detection and localization of such issues and unambiguous prediction of impending issues. Simulations with real network fault datasets show the effectiveness of its architecture in large networks. 
    more » « less